Low-Frequency Raman Spectra of Amino Acids Measured with an Astigmatism-Free Schmidt-Czerny-Turner Spectrograph: Discovery of a Second Fingerprint Region
ثبت نشده
چکیده
A novel astigmatism-free spectrograph design, the Princeton Instruments SCT 320 IsoPlane Schmidt-Czerny-Turner (SCT) spectrograph, is shown to give Raman spectra with better resolution and signal-to-noise ratios than traditional Czerny-Turner (CT) spectrographs. A single-stage SCT spectrograph has been interfaced to a new low-frequency Raman spectroscopy module that uses volume phase holographic gratings as Rayleigh line filters. The system has been used to measure the low-frequency Raman spectra of several crystalline amino acids. A spectrum of l-cystine shows that peaks as close as 10 cm to the Rayleigh line are measureable. The spectra show complex patterns of peaks that can be used to easily distinguish the acids from each other, resulting in what may best be called a “second fingerprint region.” While useful for low-frequency Raman work, the system described here is useful for examining higher-frequency modes of samples as well. Introduction The Czerny-Turner (CT) spectrograph has been used to measure Raman spectra of samples for decades. Inherent in the design of CT spectrographs are optical aberrations, including astigmatism, coma, and spherical aberration. Astigmatism occurs when mirrors are used to focus a source off axis, giving distorted images and spectral peaks that are broadened, thus degrading spectral resolution. Coma occurs when mirrors are used to image a source off axis, and gives rise to images with a comet-like tail and spectra with asymmetrically broadened peaks. Spherical aberration is caused by using spherical mirrors to focus an image and causes a symmetrical blur in images and broadening in spectra. These optical aberrations are a result of the laws of physics and are present in CT spectrographs regardless of their manufacturer. The net result of the astigmatism, coma, and spherical aberration inherent in the CT design are Raman peaks of poor quality. The 802 cm Raman shift peak of cyclohexane measured with a CT spectrograph seen in Figure 1 has an asymmetric lineshape, is broadened so it has degraded spectral resolution, and is short, thus lowering the signal-to-noise ratio (SNR). In response to the problems with the CT spectrograph, Princeton Instruments has developed the Schmidt-Czerny-Turner (SCT) spectrograph, or IsoPlane SCT 320 spectrograph. Compared to the CT design, the SCT spectrograph has zero astigmatism at all wavelengths across the entire focal plane, as well as reduced levels of coma and spherical aberration. Figure 1 shows a comparison of the 802 cm Raman shift peak of cyclohexane measured with
منابع مشابه
Laser Micro-Raman Spectroscopy of CVD Nanocrystalline Diamond Thin Film
Laser micro-Raman spectroscopy is an ideal tool for assessment and characterization of various types of carbon-based materials. Due to its special optical properties (CrN) coated stainless steel substrates. NCD films have been investigated by laser micro-Raman spectroscopy. The fingerprint of diamond based materials is in the spectral region of 1000-1600 cm-1 in the first order of Raman scatter...
متن کاملLabel-free live-cell imaging of nucleic acids using stimulated Raman scattering microscopy.
Imaging of nucleic acids is important for studying cellular processes such as cell division and apoptosis. A noninvasive label-free technique is attractive. Raman spectroscopy provides rich chemical information based on specific vibrational peaks. However, the signal from spontaneous Raman scattering is weak and long integration times are required, which drastically limits the imaging speed whe...
متن کاملRemote Pulsed–laser Raman Spectroscopy System for Mineral Analysis
Introduction: There is a need for an instrument that can be used for remote in situ identification of biogenic and a-biogenic minerals, various types of ices, organic materials etc. on planetary surfaces. The potential for measuring remoteRaman spectra of organic [1] and inorganic materials and minerals [2] with a small telescope and CW lasers have been demonstrated. Pulsed-laser Raman spectros...
متن کاملPolymorph characterization of active pharmaceutical ingredients (APIs) using low-frequency Raman spectroscopy.
Polymorph detection, identification, and quantitation in crystalline materials are of great importance to the pharmaceutical industry. Vibrational spectroscopic techniques used for this purpose include Fourier transform mid-infrared (FT-MIR) spectroscopy, Fourier transform near-infrared (FT-NIR) spectroscopy, Raman spectroscopy, and terahertz (THz) and far-infrared (FIR) spectroscopy. Typically...
متن کاملAngle-dependent terahertz time-domain spectroscopy of amino acid single crystals.
The measurement of absorption spectra using angle-dependent terahertz (THz) time-domain spectroscopy for amino acid single crystals of l-cysteine and l-histidine is reported for the first time. Linearly polarized THz radiation enables us to observe angle-dependent far-infrared absorption spectra of amino acid single crystals and determine the direction of the oscillating dipole of the molecules...
متن کامل